Patient Reported Preferences from the Pro Solo Novel Patch Pump Clinical Trial

Prof Katharine Barnard-Kelly PhD

J Mader, E Franek, N Dagenbach, T Etter, T Kuensting, F Thienel, N Oliver

Disclosures

- Roche Global Advisory Board; Roche IDS Advisory Board;
 Sanofi Integrated Care Advisory Board; Ascensia Global Advisory Board
- Speaker honoraria and travel expenses: LifeScan, Roche, Sanofi
- Research funding: Novo Nordisk, Roche, BD, Dexcom, Helmsley
 Charitable Trust, JDRF, NIH, NIHR

Accu-Chek Solo Micropump System

u Inserter

u Pump holder

u Cannula (6 or 9mm)

Durable component

u Reservoir

u Controller

BARNARD HEALTH

Why Patch Pumps?

- Greater flexibility in clothes choices
- Discreet remote bolus functionality
- Patient choice in insulin delivery technology
- Simplicity delivered accuracy
- Quality of life reduced visibility of disease state
- Psychosocial functioning

Inherent Bias Can Impede Access

- considerable variation in the delivery of diabetes care processes, structured education, uptake of diabetes technologies and achievement of diabetes-related targets
- This variability extends across multiple factors, including geographic area, gender, racial/ethnic groups and level of social deprivation
- HCPs sometimes hold prejudicial and erroneous views about the types of individual that would most benefit from using diabetes technologies
- It's always worth asking 'why not'?

Enabling (or Stifling) the Patient Voice

- Healthcare systems are structurally biased environments where the power imbalance is stark
- Physicians on average interrupt their patient approximately 11 seconds after they start describing the problem
- u 'On demand' articulation of facilitators and barriers to self-management is exceptionally difficult
- Gently probing questions can aid understanding

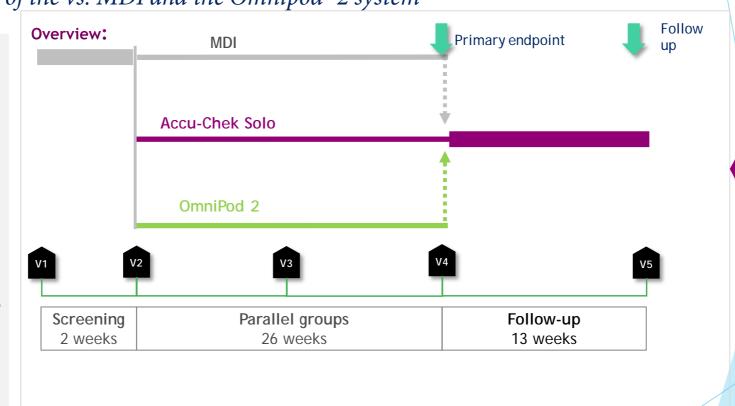
PRO Solo Study

Investigate effect on increased treatment satisfaction with the Accu-Chek® Solo micropump system in real life use of the vs. MDI and the Omnipod® 2 system

Intervention:

Accu-Chek Solo vs. MDI and vs. OmniPod 2 in adults

Design:


39+ weeks, 3-arm RCT, open, prospective, multicenter (21), multinational (A, D, PL, UK)

Participants:

181 PwT1D, MDI ≥6 months ≥18y

Endpoints:

Treatment satisfaction (DTQ)
Device satisfaction
Device performance
Severe hypoglycemia
HbA_{1c}

Status finished

PRO Solo Demographics

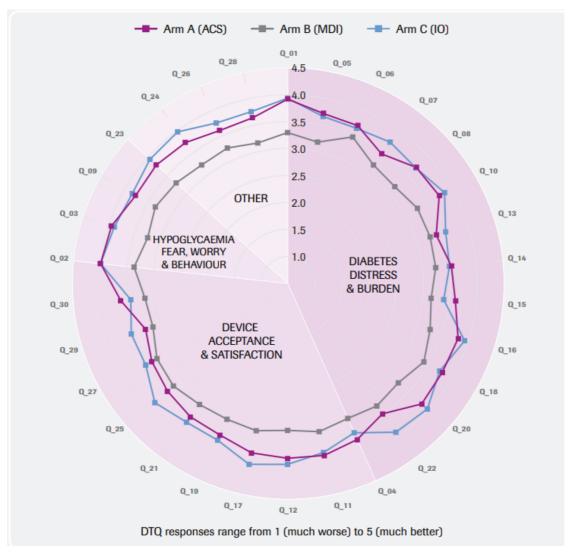
Baseline Demographics (mean ± standard deviation)	All Subjects (N=181)	Arm A PRO Solo (N=62)	Arm B MDI (N=61)	Arm C OmniPod (N=58)
Female	79 (43.6%)	29 (46.8%)	29 (47.5%)	21 (36.2%)
Age (yrs)	39.0 ± 11.9	38.0 ± 11.8	38.6 ± 10.8	40.6 ± 13.1
Height (cm)	174.2 ± 9.5	174.2 ± 9.3	173.0 ± 10.7	175.4 ± 8.4
Weight (kg)	80.7 ± 16.8	77.2 ± 14.1	81.7 ± 17.7	83.4 ± 18.1
вмі	26.5 ± 4.6	25.3 ± 3.5	27.1 ± 4.7	27.0 ± 5.2
Years since diagnosis of diabetes	15.0 ± 10.8	14.0 ± 10.8	15.1 ± 10.8	16.0 ± 10.9
Ethnicity				
Asian	3 (1.7%)	1 (1.6%)	1 (1.6%)	1 (1.7%)
Other	3 (1.7%)	2 (3.2%)	0 (0.0%)	1 (1.7%)
White	175 (96.7%)	59 (95.2%)	60 (98.4%)	56 (96.6%)

PRO Questionnaire Data

DTQ - Diabetes Technology Questionnaire:

Mean DTQ scores at 6 months:

	Accu-Chek Solo	MDI	p-value
LSM ± SE	105.9 ± 2.66	94.8 ± 2.63	0.001


PAID - Problem Areas in Diabetes:

Reported problem areas in diabetes decreased with insulin pump use:

	Accu-Chek Solo	MDI	p-value
LSM ± SE	6.32 ± 0.43	7.62 ± 0.42	0.010

DTQ Mapped to Psych Constructs

Mader, J. K., et al. "First results from PRO Solo: patient reported outcomes from a clinical trial comparing a new patch pump with MDI and an established patch pump." Diabetologia 2020; 63: Suppl 1.

Biomedical and PRO Questionnaire Data

- u DTQ items each mapped to key psychosocial constructs: burden and distress, hypoglycaemia (worry, fear, confidence), tech acceptance and attitudes towards device
- Significant improvement on all constructs for Solo users vs MDI users
- Confidence was high around getting the right amount of insulin during exercise, on sick days or if meals are skipped/delayed
- Visibility of disease state and sleep were improved
- Interference in daily life was reduced

Results - Thematic Analyses

Most Cited Benefits

Benefit	n
Wireless (tubeless)	37
Quick bolus	32
No injections	28
Bolus calculator	22
Ease of use	22
Discreet	22

Most Useful Attributes

Attribute	n
Bolus calculator	64
Flexible basal / bolus rates	42
Quick bolus	41

n=181 participants, providing n=226 individual coded responses*.

Results - Thematic Analyses Downsides

Feature	n
Not smartphone app	57
Not waterproof	39
Would like greater compatibility with other systems eg CGM/BG meter	26

Participant Quotes - Benefits

Fewer or no more injections

- "You don't need to give injections several times a day"
- "That I don't have to inject myself several times but the pump takes over some of the delivery."
- "The not forgetting to take my injections when rushing in the mornings and not worrying about losing my pen or misplacing it"

Ease of use and convenience

- "The system makes my everyday life easier. It improves my everyday situation and I don't have to waste so much time thinking about my diabetes."
- "User-friendly layout. The pump system was very easy to use and the bolus calculator worked well."
- "Once the pod is in place you don't have to do anything for three days, really easy"

Participant Quotes - Benefits

Wireless

- "That the pump doesn't have a tube."
- "Wireless operation no connection between the remote and the pump."

Size/Appearance

- "It is small, compact and can be attached to the body as a whole system."
- "Small micropump size"

Discreet

- "a small, discreet pump, without additional cables, a manager similar to a phone, the pump can be concealed almost anywhere"
- "discreet bolus delivery in meetings and at restaurants"
- "Inconspicuous compared to the pen"

What Participants Said They Would Change

Alerts

- "It should be possible to switch off warning tones vibrations would suffice"
- "the sounds it makes to remind you the pump needs changing can be disruptive in some situations"

Remote operation

- "It would be good if the pump could also be controlled via mobile phone"
- "Please make an app so that everything can be managed via a cell phone"

Greater Compatability

- "Make it possible for the device to communicate with a CGM"
- "The ability to connect the pump with the Libre type system, without the need to constantly collect blood drops. I work in the "public" sector, so I am unable to look for a secluded place every time."

Why It Matters

- Parity of esteem is crucial valuing mental health equally with physical health
- u Diabetes can be a very challenging condition relentless, unforgiving, physically unpleasant, socially aversive
- Devices that minimise burden, including visibility of disease state, are essential
- Insulin pump therapy has well-proven glycaemic control benefits - providing choice of tubeless versus tubed pump is important personal preference
- u It is not a test of endurance and HCPs are not the gatekeepers of wellbeing; they are facilitators!

Conclusions

- Results show reduced burden of diabetes selfmanagement
- Frees the user of the 2nd thought associated with tethered pump eg pockets, using the bathroom, visibility, getting snagged
- Greater compatibility / integration with other devices would be useful

Thank you for listening

Any questions?

Contact:

Email: katharinebarnard@bhrltd.com

Twitter: @Prof_K_Barnard

Website: www.barnardhealth.com

